Bioenergetics, overcompensation, and the source–sink status of marine reserves
نویسندگان
چکیده
One of the hypothesized functions of marine protected areas (MPAs) is to serve as sources of biomass, with biomass spilling over from the reserve into neighbouring, harvested areas. We argue that the net larval flow (from or to the marine reserve) depends on between-area differences in the population-level biomass production rate, whereas the direction of adult flow depends on differences in the biomass standing stock. Hence, an important question is whether populationlevel biomass production increases (overcompensation) or decreases (undercompensation) with increased per capita mortality. We show that in a consumer–resource context, the source–sink status of an MPA may depend on the details of the individual-level bioenergetics, as well as on the dispersal rates of larvae and adults. We compare two classic bioenergetic models (net-production vs. gross-production allocation). The net-production model predicts that population-level reproduction may increase with mortality (overcompensation), whereas gross-production allocation always results in undercompensation. We show that models often implicitly assume gross-production allocation, thus potentially overestimating the capacity of MPAs to source unprotected areas. We briefly discuss results of two other models (a simplified, logistic model and a size-structured model), suggesting that the relation between overcompensation and the larval sink status of MPAs is
منابع مشابه
Plant sink-source relationships and carbon isotopic labeling techniques . Taher Barzegar* and Fatemhe Nekounam
The concept of source and sink strength is presently well-recognized and accepted by the scientific community as a pertinent approach describing the mechanisms of carbohydrate partitioning into the different and competing organs at a whole plant or canopy scales. Sink–source relationships have a clear role in the size of sink organs. Besides the effect on organ size, sink/source ratio might also...
متن کاملSink Location Service Based on Fano Plane in Wireless Sensor Networks
Sink location is considered as a basic service in geographic routing in wireless sensor networks. Obtaining the location of sink node by source node using an efficient method with low complexity has always been a challenging issue in research. In this paper, a sink location algorithm based on Fano plane is proposed. The research challenge is how to ensure the intersection of two SLQ (Location Q...
متن کاملApplication of “Sink & Source” and “Stream wise” Methods for Exergy Analysis of Two MED Desalination Systems
Utilization of fossil fuel for supplying of requires energy of desalination systems is common. On the other hand, solar energy is one of the high-grade energies in the world that can be found specifically in hot weather places. Therefore, utilization of solar energy for operation of desalination systems will reduce greenhouse gases and is a good alternative way. Common exergy analysis method (s...
متن کاملConversion of Network Problem with Transfer Nodes, and Condition of Supplying the Demand of any Sink from the Particular Source to the Transportation Problem
In this article we present an algorithm for converting a network problem with several sources and several sinks including several transfer nodes and condition of supplying the demand of any sink from a particular source to the transportation problem. Towards this end, and considering the very special structure of transportation algorithm, after implementing the shortest path algorithm or ...
متن کاملStudy of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium
Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initial...
متن کامل